金屬氧化物基電致變色薄膜的制備及性能改善
本文選題:電致變色 + 氧化鎳 ; 參考:《浙江大學》2014年博士論文
【摘要】:電致變色材料是指某些物質在一定的電壓作用下,顏色會發(fā)生可逆的、持久的變化。電致變色材料由于其特定的功能和迷人應用前景而成為各國研究的熱點。這種材料不僅可以應用在智能節(jié)能窗上,還可以用在低能耗顯示器、汽車防炫目后視鏡以及衛(wèi)星、武器裝備的紅外隱身等各種領域。目前為止,日本,歐洲和美國一些工業(yè)強國在電致變色技術應用研究方面處于領先地位,尤其是在全固態(tài)電致變色器件研發(fā)上。由于我國在電致變色材料和器件方面的研究起步比較晚,與國外的先進應用研究技術還有一定的差距。另外,材料顏色變化單一、變色速度慢和循環(huán)壽命短等仍然制約著電致變色技術的發(fā)展。本論文以NiO、WO3和TiO2金屬氧化物電致變色材料為主要研究對象,采用納米化、復合化和摻雜等手段對其進行改性研究,主要目的是改善目前金屬氧化物電致變色材料普遍存在的一些問題,如變色速度慢、光學調制范圍小、變色效率低、循環(huán)壽命短和變色種類單一等。 通過氯化膽堿基離子液體在ITO玻璃上電沉積金屬Ni層,然后在空氣中熱處理氧化經過兩步法制備成NiO薄膜,這種薄膜具有超快的電致變色速度、較高的變色效率和較好的循環(huán)穩(wěn)定性,但是其光學調制范圍比較小,而且制備工藝比較繁瑣。為了解決上述兩步法制備NiO薄膜的缺陷,通過在氯化膽堿基離子液體中加入氧化劑的方法直接制備出了NiO薄膜。這種NiO薄膜具有比較大的光學調制范圍,在550nm處達到了67%,而且制備工藝簡單,具有較好的記憶性能和良好的循環(huán)穩(wěn)定性。 結合水熱和化學浴沉積法制備了TiO2/NiO核殼納米棒陣列薄膜。與單純的NiO納米片薄膜相比,核殼結構的納米棒陣列有利于電子的傳輸和離子的擴散,具有較大的光學調制范圍、高的變色效率和良好的循環(huán)穩(wěn)定性。通過電泳沉積和化學浴沉積法制備了NiO/石墨烯復合薄膜,由于石墨烯良好的電子導電性以及復合薄膜具有更大的空隙便于電解液的滲透和電子的傳輸,具有比較好的電化學活性和反應可逆性。相比于NiO納米片薄膜,NiO/石墨烯復合薄膜具有更高的變色效率、快的電致變色速度和良好的循環(huán)穩(wěn)定性,說明材料復合化是提高電致變色性能的有效途徑。 采用水熱和溶劑熱法制備了W03納米片、納米團簇、納米樹和納米線薄膜。用水熱法在FTO導電基底上生長的多孔結構W03納米片,可以為電化學反應提供更大活性面積和便于離子擴散,具有很好的電化學性能和電致變色性能。相比于不同pH下制備的W03納米束和納米塊,W03納米片薄膜具有較高的變色效率,較快的電致變色速度,更大的光學調制范圍和更好的循環(huán)穩(wěn)定性。利用溶劑熱法在FTO基底上生長了W03納米樹和納米線薄膜,在可見光和紅外區(qū)域都具有很突出的電致變色性能。特別地,在-0.7~1.0V區(qū)間W03納米樹和納米線的光學調制在633nm處分別為66.5%和66%,在2000nm處分別為73.8%和53.9%,在8μm處分別為57.7%和51.7%,著色和褪色時間分別為4.6/3.6s和2.0/3.4s,變色效率分別為126和120cm2C-1,經過4500循環(huán)次后的光學調制范圍分別是開始光學調制范圍的77.5%和81.7%。 通過水熱反應制備不同濃度Ti摻雜的W03薄膜。在W03薄膜中摻雜低濃度Ti不僅降低了W03薄膜的結晶度,還改善了W03薄膜的微觀形貌,形成了大孔的星狀結構,為離子擴散和遷移提供了更多的路徑,具有更大的光學調制范圍、更快的電致變色速度和更高的變色效率。通過水熱和電沉積法在FTO玻璃基底上制備了TiO2/WO3核殼納米棒陣列,以單晶Ti02納米棒為芯核、非晶態(tài)W03為殼層的異質結結構顯著提高了材料的電致變色性能和電化學穩(wěn)定性。與WO3薄膜相比,TiO2/WO3核殼納米棒陣列具有較大的光學調制、較快的電致變色速度、高的變色效率和優(yōu)異的循環(huán)穩(wěn)定性。 通過結合水熱、溶劑熱和電聚合方法分別制備了TiO2/PANI和WO3/PANI核殼納米結構薄膜。金屬氧化物/PANI核殼納米陣列結構具有多變色效應,材料在紫色、綠色、黃色和藍色之間相互轉變。金屬氧化物(?)PANI核殼納米陣列還具有比較大的光學調制范圍、高的變色效率和優(yōu)異的循環(huán)穩(wěn)定性。
[Abstract]:Electrochromic materials refer to the reversible and persistent changes in color of certain substances under the action of a certain voltage. Electrochromic materials have become a hot spot of research in various countries because of their specific functions and attractive application prospects. This material can be used not only on intelligent energy saving windows but also in low energy display and car protection. Eye mirrors and satellites, infrared stealth of weaponry and other fields. So far, some industrial powers in Japan, Europe and the United States are in the leading position in the application of electrochromic technology, especially in the research and development of all solid state electrochromic devices. Because of our country's research on electrochromic materials and devices In addition, there is still a certain gap between the advanced applied research technology abroad. In addition, the change of material color is single, the speed of discoloration is slow and the cycle life is short, etc. the electrochromic technology is still restricted. In this paper, NiO, WO3 and TiO2 metal oxide electrochromic materials are used as the main research objects, and the methods of nano, compound and doping are used. The main purpose of this study is to improve the current problems of metal oxide electrochromic materials, such as slow discoloration speed, small optical modulation range, low discoloration efficiency, short cycle life and single discoloration.
The metal Ni layer was electrodeposited on ITO glass by the ionic liquid of chloride bile base on ITO glass. Then, the NiO film was prepared by heat treatment and oxidation in the air. This film has super fast electrochromic speed, high discoloration efficiency and good cyclic stability, but its optical modulation range is relatively small, and the preparation process is more complicated. In order to solve the defects of the NiO film prepared by the two step method, the NiO film was prepared directly by adding oxidant to the chloride base ionic liquid. The NiO film has a relatively large optical modulation range, reached 67% at 550nm, and the preparation process is simple. It has good memory performance and good cyclic stability.
TiO2/NiO nuclear shell nanorod array films are prepared by water heat and chemical bath deposition. Compared with pure NiO nanoscale film, the nanorod array of nuclear shell structure is beneficial to electron transport and ion diffusion, with large optical modulation range, high discoloration efficiency and good cyclic stability. Electrophoretic deposition and chemical bath are used. The NiO/ graphene composite film has been prepared by the deposition method. Due to the good electronic conductivity of graphene and the larger gap of the composite film, it is convenient for the permeation of electrolyte and the transmission of electrons. It has better electrochemical activity and reversibility of the reaction. Compared with the NiO film, the NiO/ graphene composite film has a higher discoloration efficiency. The fast electrochromic speed and good cycling stability indicate that composite material is an effective way to improve electrochromic properties.
W03 nanoscale, nanoclusters, nanoscale and nanowire films are prepared by hydrothermal and solvothermal methods. The porous structure W03 nanoscale grown on FTO conductive substrates by hydrothermal method can provide more active area and facilitate ion diffusion for electrochemical reaction. It has good electrochemistry and electrochromic properties. Compared with different pH The prepared W03 nanometers and nanometers, W03 nanoscale films have high discoloration efficiency, faster electrochromic speed, greater optical modulation range and better cyclic stability. W03 nanowires and nanowire films have been grown on FTO substrates by solvothermal method. The electrochromic properties of both visible and infrared regions are very prominent. In particular, the optical modulation of W03 nanowires and nanowires in the range of -0.7 to 1.0V is 66.5% and 66% at 633nm, respectively 73.8% and 53.9% at 2000Nm, 57.7% and 51.7% at 8 mu m respectively, and the color and fading time are 4.6/3.6s and 2.0/3.4s respectively, and the discoloration efficiency is 126 and 120cm2C-1 respectively, after 4500 cycles of optical modulation. The ranges are 77.5% and 81.7%. of optical modulation range respectively.
Ti doped W03 thin films with different concentrations are prepared by hydrothermal reaction. Doping low concentration Ti in W03 film not only reduces the crystallinity of W03 thin films, but also improves the micromorphology of W03 thin films, forming a large pore star structure, providing more paths for ion diffusion and migration, with greater optical modulation range and faster electrochromism. TiO2/WO3 nuclear shell nanorod arrays were prepared on FTO glass substrate by water heat and electrodeposition, with single crystal Ti02 nanorods as core and amorphous W03 as shell structure to improve the electrochromic and electrochemical stability of the material. Compared with WO3 thin film, the TiO2/WO3 nuclear shell nanorod array The column has larger optical modulation, faster electrochromic speed, higher discoloration efficiency and excellent cycle stability.
TiO2/PANI and WO3/PANI nuclear shell nanostructure films are prepared by combining hydrothermal, solvent heat and electropolymerization. The structure of metal oxide /PANI nuclear shell nanoarrays has a multi color change effect. The material is changed from one to another in purple, green, yellow and blue. The metal oxide (?) PANI nuclear shell nanoarray has a relatively large optical modulation. The system has high color changing efficiency and excellent cycling stability.
【學位授予單位】:浙江大學
【學位級別】:博士
【學位授予年份】:2014
【分類號】:TB383.2
【共引文獻】
相關期刊論文 前3條
1 陳怡;徐征;孫金禮;鄧恒濤;陳海濤;趙謖玲;;大面積智能電致變色玻璃的產業(yè)化現狀及未來[J];功能材料;2013年17期
2 張學科;李合琴;周矗;顏毓雷;王偉;喬愷;;晶態(tài)WO_3電致變色薄膜和器件的制備及性能研究[J];合肥工業(yè)大學學報(自然科學版);2014年05期
3 鄒振高;;變色材料的研究進展[J];中國個體防護裝備;2013年05期
相關博士學位論文 前4條
1 關麗;星形齊聚噻吩衍生物的制備及其光、電性能與應用研究[D];華南理工大學;2012年
2 龐華鋒;氧化鎢和氧化鋅功能薄膜材料及其器件應用研究[D];電子科技大學;2013年
3 胡彬;基于噻吩基團的D-A結構電致變色材料的合成及性能[D];浙江工業(yè)大學;2013年
4 馬董云;智能窗用有機/無機電致變色薄膜的結構與性能調控及器件設計[D];東華大學;2013年
相關碩士學位論文 前5條
1 高金明;星型共軛齊聚物的合成及其光、電響應性能[D];華南理工大學;2013年
2 秦磊強;丙烯酸及環(huán)氧乙烷接枝EDOT、芘、咔唑的二次聚合[D];江西科技師范大學;2013年
3 陳娜;有機體系電沉積制備錳摻雜氧化鎳電致變色薄膜及性能研究[D];中國海洋大學;2013年
4 馬德文;鋅摻雜氧化鎳電致變色薄膜的制備及性能研究[D];中國海洋大學;2013年
5 曾泳;W/WO_3 pH電極的制備及響應機制研究[D];華中科技大學;2013年
,本文編號:1959887
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1959887.html