面向復雜產品作業(yè)流程仿真的擴展場景圖構建與解析技術及其應用研究
本文選題:作業(yè)流程仿真 + 場景圖 ; 參考:《浙江大學》2017年碩士論文
【摘要】:復雜產品是機械、液壓、電子、控制等多學科融合的系統(tǒng),通常包含多個子系統(tǒng),組成零部件數量眾多、結構復雜。采用數字樣機作業(yè)流程仿真技術可以直觀地展示復雜產品的作業(yè)過程,從而驗證產品作業(yè)功能設計的正確性。目前,作業(yè)流程仿真系統(tǒng)通常只是對作業(yè)動作的虛擬仿真,無法集成多學科仿真信息。由于復雜產品自身結構的復雜性,其作業(yè)流程仿真的流暢性也無法保障。本文針對上述問題,運用擴展場景圖技術,實現了作業(yè)流程仿真多層級幾何模型與多學科仿真信息的集成。本文主要內容包括:第一章介紹了復雜產品作業(yè)流程仿真的關鍵技術,綜述了國內外研究現狀,闡述了本文的研究內容和組織架構。第二章提出了復雜產品多學科集成擴展場景圖的構建方法。首先分析傳統(tǒng)場景圖在多學科作業(yè)流程仿真中的不足,對場景圖中的多學科數字樣機節(jié)點進行了擴展;然后對擴展的多層級幾何節(jié)點和多學科行為節(jié)點給出了形式化描述;最后構建了作業(yè)流程仿真的擴展場景圖,實現了復雜產品多學科仿真模型的集成,為實現多學科集成的作業(yè)流程仿真奠定了基礎。第三章提出了面向幾何節(jié)點生成的裝配體多層級筒化方法。首先基于特征識別對裝配體實體模型的圓角過渡特征進行平角化,對裝配孔與微小孔特征進行修補簡化;然后將實體模型網格化,通過高斯映射對裝配體網格模型進行面片聚類分割,經過多視點渲染識別內部隱藏零件和面片;最后進行裝配模型的多層次細節(jié)網格簡化,得到裝配體多層級模型。第四章提出了基于CAE數據驅動的多學科行為節(jié)點解析方法。通過擴展場景圖中多學科仿真行為節(jié)點完成了多學科CAE分析數據的集成,通過節(jié)點更新遍歷實現了機構運動、云圖繪制、流線繪制、曲線繪制仿真行為在作業(yè)流程仿真過程中的同步集成,最終實現了復雜產品多學科集成的作業(yè)流程仿真。第五章開發(fā)了工業(yè)汽輪機作業(yè)流程仿真系統(tǒng),介紹了系統(tǒng)的架構和仿真的流程,實現了汽輪機多工況下的多學科集成作業(yè)仿真。第六章對論文的主要研究工作和創(chuàng)新成果進行了總結,并對今后的研究工作進行了展望。
[Abstract]:Complex product is a multi-disciplinary system of mechanical, hydraulic, electronic, control and so on. It usually contains many subsystems, which make up a large number of parts and complex structure. The operation process of complex products can be displayed intuitively by using digital prototyping process simulation technology, and the correctness of product job function design can be verified. At present, the job flow simulation system is usually only the virtual simulation of the job action, and can not integrate the multidisciplinary simulation information. Because of the complexity of the complex product structure, the fluency of the job flow simulation can not be guaranteed. In order to solve the above problems, the integration of multi-level geometry model of job flow simulation and multidisciplinary simulation information is realized by using extended scene diagram technology. The main contents of this paper are as follows: the first chapter introduces the key technologies of complex product process simulation, summarizes the domestic and foreign research situation, and expounds the research content and organization structure of this paper. In the second chapter, the method of constructing complex product multidisciplinary integration extended scene diagram is proposed. Firstly, the shortcomings of the traditional scene diagram in the simulation of multidisciplinary job flow are analyzed, and the multi-disciplinary digital prototype nodes in the scene diagram are extended, and then the extended multi-level geometric nodes and multi-disciplinary behavior nodes are formalized. Finally, the extended scene diagram of job process simulation is constructed, and the integration of multidisciplinary simulation model of complex products is realized, which lays a foundation for the implementation of multidisciplinary integrated job flow simulation. In chapter 3, a multilevel method for geometric node generation is proposed. Firstly, based on feature recognition, the corner transition feature of assembly entity model is flattened, and the features of assembly hole and small hole are repaired and simplified, and then the solid model is meshed. The assembly mesh model is segmented by Gao Si mapping and identified by multi-view rendering. Finally, the multi-level detail mesh of assembly model is simplified and the assembly multi-level model is obtained. In chapter 4, a multi-disciplinary behavior node analysis method based on CAE data-driven is proposed. The integration of multidisciplinary CAE analysis data is completed by extending the multi-disciplinary simulation behavior nodes in the scene graph, and the mechanism motion, cloud drawing, streamline drawing are realized by node updating traversal. The synchronous integration of curve drawing simulation behavior in the process of job process simulation finally realizes the multidisciplinary integration of complex product job flow simulation. In the fifth chapter, the simulation system of industrial steam turbine operation flow is developed. The architecture and simulation flow of the system are introduced, and the multidisciplinary integrated operation simulation of steam turbine under multi-working conditions is realized. The sixth chapter summarizes the main research work and innovation results, and prospects the future research work.
【學位授予單位】:浙江大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB472;TP391.9
【相似文獻】
相關期刊論文 前10條
1 薛闖;賈建軍;舒嶸;王建宇;;裝配體結構有限元分析中的螺釘連接模型[J];科學技術與工程;2006年07期
2 常智勇;周方云;周孝倫;袁義;;可展回轉型裝配體管道展開技術[J];計算機集成制造系統(tǒng);2010年09期
3 陶松橋;黃正東;;基于屬性鄰接圖匹配的裝配體模型搜索方法[J];計算機輔助設計與圖形學學報;2011年02期
4 李海龍,董金祥,葛建新,何志均;基于約束的裝配體技術[J];計算機輔助設計與圖形學學報;1997年03期
5 王波,王寧生;裝配體拆卸序列的自動生成及優(yōu)化研究[J];淮海工學院學報(自然科學版);2005年01期
6 ;您設計的產品有多環(huán)保?[J];新技術新工藝;2009年03期
7 王挺昊,王君英,高磊,王靜蕾;可集成的裝配體精度分析工具的研究[J];機械設計與制造;2001年06期
8 楊培林,陳曉南,龐宣明;裝配體中的聯接關系及子裝配生成方法的研究[J];西安交通大學學報;2004年11期
9 周煒;鄭建榮;顏建軍;;基于子圖同構與事例匹配的裝配體局部結構相似性分析[J];計算機輔助設計與圖形學學報;2010年02期
10 閔少松;朱曉軍;朱錫;;裝配體可行拆卸操作生成[J];船海工程;2010年05期
相關會議論文 前7條
1 剛守堂;楚金甫;唐喜林;;用三維有限元法分析計算復雜裝配體單橫擺懸架應力[A];第五屆河南省汽車工程科技學術研討會論文集[C];2008年
2 張,
本文編號:1895773
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1895773.html