西山村滑坡地震力加卸載響應特征及穩(wěn)定性研究
本文選題:西山村滑坡 + 地震數(shù)值模擬; 參考:《成都理工大學》2017年碩士論文
【摘要】:地震動力作用下的斜坡穩(wěn)定性研究對于我國地震高發(fā)的西南山區(qū)有著重要意義。本文以西山村滑坡為研究對象,在搜集整理研究區(qū)域相關地質資料并對西山村滑坡形態(tài)、地質結構特征、宏觀變形特征等詳細調查與分析的基礎上,對西山村滑坡在地震動力荷載作用下的動力響應及加卸載響應規(guī)律進行深入分析研究,主要研究內容有以下幾個方面:(1)分析了理縣西山村滑坡基本工程地質條件。開展現(xiàn)場調查和室內試驗分析,研究堆積層滑坡的物質組成、結構特征以及強度、滲透特性,掌握滑坡的各項基本的巖土力學性能指標數(shù)據(jù),為后續(xù)數(shù)值模擬研究、參數(shù)取值等提供依據(jù)。(2)結合西山村滑坡的監(jiān)測數(shù)據(jù)以及其宏觀變形特征,對滑坡進行變形分區(qū),研究了各個變形區(qū)的變形特點,分析了滑坡的形成及變形機理。(3)研究了西山村滑坡在地震作用下的動力響應特征。通過數(shù)值模擬的方法,研究西山村滑坡在地震動力作用下的位移、變形速率的動力響應時程特征,分析其變形特征,并對計算模擬結果進行討論,進而分析了滑坡在地震作用下的變形破壞機理。(4)根據(jù)變形的數(shù)值模擬結果,采用加卸載響應比理論,分析研究西山村滑坡在不同地震荷載下的位移、速度、加速度加卸載響應規(guī)律。(5)采用加卸載響應度判據(jù),對地震動力作用下西山村滑坡的穩(wěn)定性進行定量分析,并與常規(guī)的斜坡穩(wěn)定性分析方法進行比對,驗證其正確性。通過以上研究得到了以下結論和成果:(1)西山村滑坡位于理縣通化鄉(xiāng)雜谷腦河左岸,地理坐標為北緯30°54′43″,東經(jīng)102°32′46″;抡w上呈前窄后寬的長條帶狀,滑坡前緣以雜谷腦河為界,高程約為1510m;滑坡左右兩側以沖溝為界;滑坡后緣以一近直立的滑坡壁為界,后緣高程約為3300m;虑昂缶壐卟罴s1790m,滑坡體縱長約為3800m,平均寬度約680m,最大寬度約為980m,滑坡堆積體厚度在10~80m之間,整體規(guī)模約1.7×108m3;挛匆娒黠@滑帶層。(2)西山村滑坡變形區(qū)域主要分布在滑坡的左側前緣和左側中部,根據(jù)滑坡復活變形特征,其變形可以分為I、II、III三個區(qū)域,其中變形Ⅰ區(qū)變形最為劇烈,Ⅱ區(qū)次之,Ⅲ區(qū)較小。綜合宏觀變形及監(jiān)測數(shù)據(jù),目前滑坡復活變形方式表現(xiàn)為牽引式滑坡,變形力學模式為蠕滑-拉裂型。(3)西山村滑坡對地震荷載的響應總體上呈現(xiàn)出非線性的特點,滑坡不同區(qū)域響應差異明顯;卤砻娴牡卣鹆憫尸F(xiàn)出前部較大,中后部逐漸減小的特征;滑坡深部地震力響應呈現(xiàn)出中部較大,前后緣較小的特征。同時,西山村滑坡表面地震力響應要大于滑坡深部響應。此外,滑坡在地震荷載下的動力響應在空間上還表現(xiàn)出各向異性的特點,滑坡在水平方向上的動力響應大于豎直方向,說明滑坡在地震作用下主要向著臨空面的方向發(fā)生變形。(4)西山村滑坡的地震力響應存在滯后性,具體表現(xiàn)在:滑坡表面上位置越高的監(jiān)測點動力響應就越滯后,監(jiān)測點埋深越淺動力響應越滯后。(5)不同類型地震波對斜坡的動力響應有很大的影響。在同一振動強度下,地震波的振動頻率越高,斜坡體上質點的變形就約趨于線性;反之,質點變形則會呈現(xiàn)出周期性波動增大的趨勢。同樣隨著振動頻率的提高,斜坡的動力響應會越來越積極,響應的滯后時間越來越短。此外,隨著地震波的振幅的增大,震后斜坡的位移也會增大。(6)西山村滑坡在地震力作用下加卸載響應比時序曲線表現(xiàn)出在1.0左右波動震蕩的特征。當響應時序曲線的表現(xiàn)出非線性特征時,對應的加卸載響應比曲線會出現(xiàn)一個峰值。同時,采用同一加卸載參量的加卸載響應比曲線會保持相似的波動趨勢,說明加卸載響應比值的變化只和各參量的變化趨勢有關。(7)西山村滑坡在持續(xù)時長為5s峰值加速度為0.15g的地震荷載作用下,其最小加卸載響應度為1.19,說明震后滑坡仍處于穩(wěn)定狀態(tài)。本研究對于預防西南山區(qū)滑坡地質災害和維護人民的生命財產(chǎn)安全,具有十分重要的現(xiàn)實意義;同時也可以為西南山區(qū)類似滑坡的地震穩(wěn)定性評價提供參考依據(jù)。
[Abstract]:The study of slope stability under seismic dynamic action is of great significance to the southwest mountainous area of China's earthquake. This paper takes the Xishan landslide as the research object, and based on the detailed investigation and analysis of the regional geological data and the detailed investigation and analysis of the landslides, geological structure features and macroscopic deformation characteristics of Xishan village. The dynamic response of the village landslide and the response law of loading and unloading under the earthquake dynamic load are deeply analyzed and studied. The main contents are as follows: (1) the basic engineering geological conditions of the landslide in Xishan village of Lixian County are analyzed. The material composition, structural characteristics and strength of the landslides are studied by field investigation and laboratory tests. Degrees, permeability characteristics, grasp the basic rock and soil mechanical properties of landslide data, for the follow-up numerical simulation research, parameter values and so on. (2) combining the monitoring data of the landslide in Xishan village and its macroscopic deformation characteristics, the deformation zone of the landslide is divided, the deformation characteristics of each deformation area are studied, and the formation and change of the landslide is analyzed. (3) the dynamic response characteristics of the landslide in Xishan village under the earthquake action are studied. Through numerical simulation, the displacement of the landslide in the Xishan village and the dynamic response time history of the deformation rate are studied, the deformation characteristics are analyzed, and the simulated results are discussed, and then the landslide is analyzed under the action of the earthquake. (4) according to the numerical simulation results of the deformation, the displacement, velocity, acceleration and unloading response laws of Xishan village landslides are analyzed by loading and unloading response ratio theory. (5) the stability of the landslide in Xishan village under the action of ground motion is quantitatively analyzed by the criterion of loading and unloading response degree, and the stability of the landslide under the action of ground motion is quantitatively analyzed. The following conclusions and results are obtained through the comparison of the conventional slope stability analysis method. The following conclusions and results are obtained: (1) the landslide is located on the left bank of the Zay valley river in the Tonghua township of the Lixian County, the geographical coordinates are 30 degrees 54 '43 "in the North latitude and 102 degrees 32' 46" in the East, and the landslide whole body is a long strip with a narrow front and a narrow width, and the front edge of the landslide is mixed. The height of the valley is about 1510m, and the elevation is about the boundary of the gully in the left and right sides of the landslide; the back edge of the landslide is bounded by a near vertical landslide wall, the elevation of the back edge is about 1790m, and the length of the landslide body is about 3800m, the average width is about 680m, the maximum width is about 980m, the thickness of the landslide accumulation is between 10~80m, and the overall scale is about 1.7 x 108m. 3. landslides do not have obvious sliding zone. (2) the deformation area of the landslide in Xishan village is mainly distributed in the left front edge and the left middle part of the landslide. According to the characteristics of the landslides' resurrection and deformation, the deformation can be divided into three regions, I, II and III, of which the deformation I area is the most severe, the second region is the second and the third is smaller. The form of the live deformation is tractive landslides, and the deformation mechanics model is creep and crack type. (3) the response of the landslide to the earthquake load is nonlinear in general, and the response difference is obvious in different landslides. The seismic response of the landslide surface appears to be larger in the front and gradually decreasing in the middle and rear parts, and the deep seismic force of the landslide. The response is larger in the middle and smaller in the front and rear edge. At the same time, the seismic response of the landslide on the Xishan village is greater than the deep response of the landslide. In addition, the dynamic response of the landslide is also anisotropic in space, and the dynamic response of the landslide in the horizontal direction is greater than the vertical direction, indicating that the landslide is in the earthquake. (4) the seismic response of the landslide in Xishan village is lagging behind. The dynamic response of the monitoring point on the surface of the landslide is lagging behind and the more shallow dynamic response of the monitoring point is lagging behind. (5) the different types of seismic waves have a great influence on the dynamic response of the slope. The higher the vibration frequency is, the higher the vibration frequency of the seismic waves, the deformation of the particles on the slope tends to be linear. On the contrary, the deformation of the particle will show a tendency to increase the periodic fluctuation. As the vibration frequency increases, the dynamic response of the slope will become more active and the lag time of the response becomes shorter and shorter. In addition, with the vibration wave vibration. As the amplitude increases, the displacement of the post earthquake slope will also increase. (6) the response ratio curve of the Xishan village landslide is characterized by fluctuating oscillation at about 1. When the response time sequence curve shows a nonlinear characteristic, the corresponding load and unload response ratio curve will have a peak. At the same time, the same loading and unloading parameter is used. The load and unload response ratio curve will keep the similar fluctuation trend, indicating that the change of the load and unload response ratio is only related to the variation trend of the parameters. (7) the minimum loading and unloading response degree of the Xishan landslide is 1.19 under the earthquake load of the peak acceleration of 5S, which indicates that the landslide is still in a stable state after the earthquake. The study is of great practical significance for the prevention of landslide geological hazards in the southwest mountain area and the maintenance of the safety of people's life and property. At the same time, it can also provide reference for the seismic stability evaluation of similar landslides in the southwest mountainous area.
【學位授予單位】:成都理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:P642.22
【參考文獻】
相關期刊論文 前10條
1 曹陽健;湯明高;楊何;;庫水與降雨作用下白水河滑坡加卸載響應比分析[J];人民長江;2016年23期
2 楊何;湯明高;朱永國;何健保;李龍起;;高烈度區(qū)水庫堆積層滑坡地震動力響應及穩(wěn)定性分析[J];水電能源科學;2016年08期
3 景鵬旭;龔文俊;孟慶筱;趙樂;;地震邊坡非線性特征及敏感性分析[J];地震工程學報;2015年S2期
4 韋正鵬;劉富強;;基于地震動力作用下的散粒體邊坡穩(wěn)定性分析[J];蘭州工業(yè)學院學報;2015年06期
5 王來貴;習彥會;劉向峰;趙國超;;地震載荷作用下巖質邊坡應力狀態(tài)調整與破壞規(guī)律分析[J];土木工程學報;2015年12期
6 賀可強;楊德兵;郭璐;李晶;;堆積層滑坡水動力位移耦合預測參數(shù)及其評價方法研究[J];巖土力學;2015年S2期
7 鄧華鋒;胡亞運;李建林;肖志勇;周美玲;胡玉;;考慮滯后效應的巖石加卸載響應比試驗研究[J];巖石力學與工程學報;2015年S1期
8 杜飛;任光明;夏敏;高波;余天彬;吳龍科;;地震作用誘發(fā)老滑坡復活機制的數(shù)值模擬[J];山地學報;2015年02期
9 涂杰文;劉紅帥;湯愛平;鄭桐;;基于離心振動臺的堆積型滑坡加速度響應特征[J];巖石力學與工程學報;2015年07期
10 陳為公;賀可強;;加卸載響應比理論在地質災害預測領域的研究進展[J];力學與實踐;2015年01期
相關會議論文 前2條
1 唐春安;左宇軍;秦泗鳳;楊菊英;王大國;李連崇;徐濤;;汶川地震中的邊坡淺層碎裂與拋射模式及其動力學解釋[A];汶川大地震工程震害調查分析與研究[C];2009年
2 李海波;馬行東;邵蔚;夏祥;戴會超;肖克強;;地震波參數(shù)對地下巖體洞室位移特性的影響分析[A];第九屆全國巖石動力學學術會議論文集[C];2005年
相關博士學位論文 前1條
1 徐光興;地震作用下邊坡工程動力響應與永久位移分析[D];西南交通大學;2011年
相關碩士學位論文 前2條
1 馬旭;四川省理縣西山村滑坡協(xié)同預警研究[D];成都理工大學;2016年
2 陳建君;復雜山區(qū)斜坡的地震動力響應分析[D];成都理工大學;2009年
,本文編號:1885656
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1885656.html