臥式冷藏陳列柜風(fēng)幕優(yōu)化研究
本文選題:冷藏陳列柜 + 溫度場。 參考:《天津商業(yè)大學(xué)》2017年碩士論文
【摘要】:近年來隨著我國城鎮(zhèn)化水平提高、居民生活方式轉(zhuǎn)變以及人們對食品安全的重視,智能化冷藏柜需求顯著增大。本文對冷藏陳列柜內(nèi)部的溫度分布和速度分布進行了分析和研究,通過建立數(shù)學(xué)計算模型進行數(shù)值計算,為試驗提供優(yōu)化指導(dǎo)和依據(jù),確定了該冷藏柜較佳的風(fēng)幕送風(fēng)速度,風(fēng)幕射流角度,并且通過試驗在此角度和送風(fēng)速度情況下進行試驗測試,以試驗來驗證模擬的準確性。首先在試驗中測試了冷藏柜封閉柜門情況下溫度分布,在得到柜內(nèi)分布較為穩(wěn)定和均勻的情況下,進行進一步試驗,本文研究的是體積較大型的冷藏柜,有三個柜門,打開一個柜門進行試驗研究,用實驗儀器測得試驗冷藏柜內(nèi)部溫度分布。然后再進行下一步試驗,在柜內(nèi)放置試驗用的食品包,測試柜內(nèi)添加載荷情況下冷藏柜內(nèi)溫度場分布,先測量柜門關(guān)閉情況下柜內(nèi)溫度分布,試驗完成后再測量柜門開啟一個的時候,柜內(nèi)溫度場分布。最后將實驗數(shù)據(jù)進行處理,并與數(shù)值模擬結(jié)果進行對比分析,得出以下結(jié)論:1.先進行數(shù)值模擬,模擬采用COMSOL軟件,以非等溫流體模型進行數(shù)值模擬,模擬中先以1m/s的送風(fēng)速度對比分析在不同射流角度下的柜內(nèi)溫度和速度分布,模擬選用角度分別為5°、0°、-5°、-10°,通過對比這四種不同風(fēng)幕射流角度發(fā)現(xiàn)以-5°傾角為最佳,送回風(fēng)溫度差值較小,柜內(nèi)溫度分布相對均勻,風(fēng)幕能夠較好形成。2.模擬確定送風(fēng)角度后,在該角度條件下,模擬不同風(fēng)幕送風(fēng)速度,對柜內(nèi)溫度場和速度場的影響,模擬選用送風(fēng)速度分別為0.5m/s、0.8m/s、1.0m/s、1.2m/s,通過對比不同風(fēng)速下柜內(nèi)溫度場的均勻性和穩(wěn)定性,以及風(fēng)幕的完整性,發(fā)現(xiàn)在送風(fēng)速度為0.8m/s時柜內(nèi)溫度分布較為均勻,冷量溢出較少,風(fēng)幕能夠完好形成。3.進行試驗測試,記錄和處理數(shù)據(jù),通過對比試驗和數(shù)值模擬,能夠發(fā)現(xiàn)試驗和模擬偏差較小,驗證了模擬的準確性,得出該送風(fēng)角度和送風(fēng)速度能夠為冷藏柜優(yōu)化設(shè)計提供依據(jù)。4.通過實驗發(fā)現(xiàn),冷藏柜內(nèi)溫度分布的均勻性和穩(wěn)定性與柜內(nèi)有無負載有較大影響,在柜內(nèi)無載荷時,柜門開啟狀態(tài)下溫度波動范圍大,頻率高,當(dāng)放入商品載荷時,柜內(nèi)溫度波動較小,能夠很好的穩(wěn)定柜內(nèi)溫度場分布。
[Abstract]:In recent years, with the improvement of urbanization, the change of residents' lifestyle and the importance of food safety, the demand for intelligent refrigerators has increased significantly. In this paper, the temperature distribution and velocity distribution inside the refrigerated display cabinet are analyzed and studied. By establishing a mathematical calculation model to carry out numerical calculation, the optimum guidance and basis for the test are provided, and the better air curtain air delivery speed of the refrigerator is determined. The angle of the air curtain jet is tested at this angle and the velocity of the air supply to verify the accuracy of the simulation. First of all, the temperature distribution in the closed cabinet door of the freezer was tested, and further tests were carried out under the condition that the distribution in the cabinet was more stable and uniform. In this paper, the larger freezer with three cabinet doors was studied. A cabinet door was opened for experimental study and the internal temperature distribution of the test freezer was measured with an experimental instrument. Then the next step of the test is to place the food bags used for the test in the cabinet. The temperature field distribution in the freezer is measured under the condition of adding load in the test cabinet, and the temperature distribution in the cabinet is first measured when the cabinet door is closed. After the test is completed, the temperature distribution in the cabinet is measured when the door is opened. Finally, the experimental data are processed and compared with the numerical simulation results, and the following conclusions are drawn: 1. In the simulation, the temperature and velocity distribution in the tank under different jet angles are analyzed by comparing the air velocity of 1m/s with the non-isothermal fluid model. The simulated angle is 5 擄0 擄-5 擄-5 擄-10 擄. By comparing the four different air curtain jet angles, it is found that the angle of -5 擄inclination is the best, the difference of return air temperature is small, the temperature distribution in the cabinet is relatively uniform, and the air curtain can better form .2. After determining the air supply angle, under the condition of this angle, the influence of different air curtain supply velocity on the temperature field and velocity field in the cabinet is simulated. By comparing the uniformity and stability of the temperature field in the cabinet and the integrity of the air curtain under different wind speeds, it is found that the temperature distribution in the tank is more uniform and the cold overflow is less when the air supply speed is 0.8m/s, and the air supply velocity is 0.5m / s / s respectively 1.0 m / s / s ~ 1.2 m / s / s, respectively, by comparing the uniformity and stability of the temperature field in the cabinet under different wind speeds, as well as the integrity of the air curtain. The wind curtain can be formed perfectly. Test test, record and process data, through contrast test and numerical simulation, it can be found that the deviation between test and simulation is small, and the accuracy of simulation is verified. It is concluded that the air supply angle and the air supply speed can provide the basis for the optimum design of the freezer. It is found that the uniformity and stability of the temperature distribution in the freezer have great influence on the load or not. When there is no load in the cabinet, the temperature fluctuation range is large and the frequency is high in the open state of the cabinet door. When the load is put into the container, The temperature fluctuation in the cabinet is small, which can stabilize the temperature distribution in the cabinet.
【學(xué)位授予單位】:天津商業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TB658
【參考文獻】
相關(guān)期刊論文 前10條
1 周子成;;2015年中國冷凍冷藏市場[J];制冷;2016年04期
2 張穎川;;農(nóng)產(chǎn)品電商冷鏈物流發(fā)展之路[J];物流技術(shù)與應(yīng)用;2016年S1期
3 張建一;黃毅銘;詹捚;;大型超市冷凍冷藏陳列柜應(yīng)用現(xiàn)狀和節(jié)能分析[J];制冷與空調(diào);2011年05期
4 陳蘊光;袁秀玲;;立式冷藏陳列柜內(nèi)部結(jié)構(gòu)對冷風(fēng)幕流動的影響[J];西安交通大學(xué)學(xué)報;2009年01期
5 張文慧;龔毅;呂彥力;;冷藏陳列柜空氣預(yù)冷器對食品溫度的影響分析[J];流體機械;2008年10期
6 谷波;周穎;;商用制冷陳列柜能耗標(biāo)準分析[J];制冷與空調(diào);2008年01期
7 呂彥力;袁培;薛牡丹;張文慧;;降低立式敞開食品冷藏陳列柜結(jié)霜新方法研究[J];廣西輕工業(yè);2007年11期
8 周穎;谷波;顧眾;陳楠;;國內(nèi)外制冷陳列柜能耗標(biāo)準分析[J];低溫工程;2007年05期
9 楊曉明;張文慧;龔毅;;減濕預(yù)冷器對冷藏陳列柜風(fēng)幕性能的影響分析[J];制冷;2007年03期
10 張文慧;呂彥力;龔毅;;冷藏陳列柜空氣預(yù)冷器設(shè)計[J];鄭州輕工業(yè)學(xué)院學(xué)報;2006年04期
相關(guān)博士學(xué)位論文 前1條
1 方凱;我國農(nóng)產(chǎn)品冷鏈物流的發(fā)展問題研究[D];華中農(nóng)業(yè)大學(xué);2013年
,本文編號:1821264
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1821264.html