面向產(chǎn)品設(shè)計的回彈模擬與幾何補償方法研究
本文選題:先進高強度鋼板 + 全工序精細化仿真 ; 參考:《華中科技大學(xué)》2014年博士論文
【摘要】:隨著汽車安全性和輕量化要求的不斷提高,高強度鋼板和鋁鎂合金等材料應(yīng)用的比例越來越高,但給產(chǎn)品設(shè)計和模具制造帶來了很多新的問題;貜検歉邚婁摪搴弯X鎂合金板沖壓成形的主要缺陷之一,嚴重影響模具試模周期和零件的尺寸精度,是現(xiàn)階段汽車沖壓成形的研究熱點。由于回彈的影響因素較多,目前有限元數(shù)值模擬技術(shù)還不能準確預(yù)測成形后的回彈量,主要依靠現(xiàn)場的反復(fù)試模來修正回彈量,嚴重影響了模具制造周期和質(zhì)量。因此,急需一種從產(chǎn)品設(shè)計、模具設(shè)計到模具調(diào)試過程的解決方案,能夠快速預(yù)測和補償回彈,提高先進高強度鋼板沖壓件的尺寸精度。 論文結(jié)合國家科技重大專項:““高檔數(shù)控機床與基礎(chǔ)制造裝備”的子課題-高強鋼板冷沖壓成形技術(shù)研究”(項目編號2010ZX04014-072)和國家自然科學(xué)基金資助項目:“DP和TRIP鋼板沖壓成形工藝參數(shù)及表面損傷的數(shù)值建模與模擬研究”(50905066),對汽車先進高強鋼板結(jié)構(gòu)件的回彈工藝控制法的試驗、全工序精細化回彈仿真、幾何回彈補償算法及系統(tǒng)、面向產(chǎn)品的快速模擬方法進行了深入的研究。并在此基礎(chǔ)上,開發(fā)了首個應(yīng)用于沖壓同步工程的面向產(chǎn)品開發(fā)全流程的集成系統(tǒng)。 為了研究高強鋼板回彈的工藝控制規(guī)律,采用伺服成形技術(shù)研究了工藝參數(shù)對先進高強鋼板和鋁板回彈控制的影響,總結(jié)了基于伺服成形的沖壓成形回彈工藝控制規(guī)律。通過反復(fù)加載、增加壓邊力和鐓死力、強壓負間隙等方法使板料在厚度方向發(fā)生了擠壓變形,可以有效減少回彈;而保壓時間、成形速度的變化對回彈控制影響不大。試驗表明,控制工藝參數(shù)只能減少回彈,很難達到消除回彈的目標。因此,為了有效解決回彈,需要進一步借助有限元數(shù)值模擬和回彈補償?shù)姆椒ā?數(shù)值模擬回彈的精度是目前的主要問題,論文結(jié)合S_Rail高強鋼板零件強壓和負間隙成形試驗結(jié)果,提出了一種基于厚向多點積分的8節(jié)點實體殼單元模型MHSSS,解決了板料受厚向擠壓變形的數(shù)值模擬問題;進一步建立了基于精細數(shù)字化模面為核心的全工序精細化回彈模擬方法。精細數(shù)字化模面是以CATIA平臺為基礎(chǔ),包括真實的拉深筋模型、真實的強壓及空開處理、真實的后工序付型空開處理。通過實體殼單元模型和全工序精細化仿真提高了成形和回彈模擬的精度,解決了先進高強鋼沖壓成形回彈模擬精度不足的問題。 為了解決CAE回彈模擬結(jié)果無法直接補償?shù)骄殧?shù)字化模面上的難點。對汽車結(jié)構(gòu)零件根據(jù)其結(jié)構(gòu)特點和回彈補償思路進行了精細化的分類研究,提出了一種基于UV線的快速幾何回彈補償算法,并在CATIA平臺上開發(fā)了一套幾何回彈補償系統(tǒng)。實現(xiàn)了對高強鋼板零件回彈的精細數(shù)字化幾何快速補償。回彈補償后的模面能夠保持與補償前模面的拓撲關(guān)系和曲面連續(xù)性,可以直接用于生產(chǎn)加工制造。 在產(chǎn)品設(shè)計源頭控制回彈缺陷是解決回彈最有效的方法之一,因此面向沖壓同步工程提出了基于產(chǎn)品的選擇性子結(jié)構(gòu)快速分析和中間工序增量法快速分析方法,實現(xiàn)了對產(chǎn)品的局部區(qū)域以及中間工序進行快速的精確模擬。最后以產(chǎn)品為導(dǎo)向,開發(fā)了一套面向汽車沖壓產(chǎn)品全流程的CAD/CAE/CAM集成系統(tǒng),為沖壓同步工程提供了專用CAE軟件支撐。
[Abstract]:With the requirement of vehicle safety and light weight increasing, application of high strength steel and aluminum magnesium alloy material is increasingly high proportion, but to the product design and mold manufacturing has brought many new problems. The springback is one of the main defects of high-strength steel and aluminum magnesium alloy sheet forming, influence precision mold test parts of the cycle and serious, is the current hotspot of automobile stamping. There are many factors to influence the springback, finite element numerical simulation technology can not accurately predict the springback after forming, mainly rely on the scene of the repeated test mode to correct the springback, seriously affect the mold manufacturing cycle and quality. Therefore, in urgent need of a from product design, mold design solutions to mold debugging process, can quickly predict and compensate springback, improve the dimensional accuracy of advanced high strength steel stampings.
According to the national science and technology major projects "high-end CNC machine tools and basic manufacturing equipment" Sub Project - high strength steel plate cold stamping technology research "(Project No. 2010ZX04014-072) and National Natural Science Fund Project:" research and numerical simulation modeling process parameters of DP and TRIP steel stamping and surface damage "(50905066) the test, springback of high strength steel structure of advanced vehicle control method, the whole process of fine springback simulation, geometric springback compensation algorithm and system simulation, rapid method for product are studied. And on this basis, developed the first integrated system for whole process products for stamping simultaneous engineering development.
In order to study the process of springback of high strength steel by servo control law, the effect of processing parameters on the impact of advanced high strength steel sheet and aluminum sheet forming Springback Control Technology, summarizes the Springback Control Law of stamping forming based on servo forming. By cyclic loading, increasing the blank holder force and upsetting force, strong negative clearance and other methods to make sheet metal in thickness the direction of extrusion deformation, can effectively reduce the springback; and the pressure holding time variable forming speed has little effect on Springback Control. The results show that the control parameters can reduce the springback, it is difficult to achieve the goal of eliminating the rebound. Therefore, in order to effectively solve the springback, the need for further compensation by means of the finite element numerical simulation and springback method.
The numerical simulation accuracy of springback is the main problem at present, combined with the S_Rail high strength steel parts forming press and negative clearance test results, this paper presents an integral to the multi point based on thick 8 node solid shell element model MHSSS, solved by numerical simulation to the thick sheet extrusion deformation to further establish the whole process; fine fine spring digital die surface based on digital simulation method. The fine die surface based on CATIA, including the true drawbead model, pressure and air handling real, real pay after the process type processing. Through the air solid shell element model and the whole process of fine simulation improves the forming and accuracy of springback simulation, solved the advanced high strength steel stamping springback simulation accuracy is insufficient.
In order to solve the difficulties of CAE springback simulation results can not be compensated directly to the fine digital die face. For automotive structural parts of the classification of fine according to its structural characteristics and springback compensation method, proposes a fast algorithm based on UV line geometry springback compensation, and developed a set of geometric springback compensation system on CATIA platform. To achieve a rapid compensation of fine digital geometry on high strength steel plate springback. Springback compensation mode and compensation after can keep the topological relationship between the surface and the front mold continuity, can be directly used for the production of manufacturing.
In the design of product source control of springback is one of the most effective rebound, so the stampingsimultaneous engineering puts forward fast analysis method of product selection subsystem of rapid analysis and intermediate process based on incremental method, realizes the accurate simulation on the fast product of the local area and the middle process. Finally, product oriented, development a system for automobile stamping product the whole process of the integrated CAD/CAE/CAM system, provides the special CAE software support for stampingsimultaneous engineering.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2014
【分類號】:TB472
【參考文獻】
相關(guān)期刊論文 前10條
1 車翔玖 ,梁學(xué)章;G~1 Continuity Conditions of B-spline Surfaces[J];Northeastern Mathematical Journal;2002年04期
2 章志兵;王同俊;柳玉起;杜亭;李志剛;;汽車覆蓋件修邊與翻邊工序的快速仿真系統(tǒng)[J];鍛壓技術(shù);2008年04期
3 蔣亮;柳玉起;章志兵;杜亭;;基于CATIA“發(fā)布”的板料成形同步仿真技術(shù)研究[J];鍛壓技術(shù);2010年06期
4 胡志超;李延平;常勇;王沁峰;李毅;;基于數(shù)值模擬的板料沖壓成形回彈補償方法[J];鍛壓技術(shù);2012年02期
5 劉斌,王敏杰,柳瑞清;V形件彎曲回彈的影響因素及其實驗研究[J];鍛壓機械;2002年05期
6 劉艷;謝值州;肖華;張冬娟;陳軍;;影響板料成形回彈數(shù)值模擬精度的因素分析[J];鍛壓裝備與制造技術(shù);2006年05期
7 康永林;陳貴江;朱國明;宋仁伯;;新一代汽車用先進高強鋼的成形與應(yīng)用[J];鋼鐵;2010年08期
8 馮靜;馬春華;王威;;淺談高強度鋼板的沖壓應(yīng)用[J];裝備制造技術(shù);2011年11期
9 陽湘安;阮鋒;;基于回彈補償?shù)哪>咝兔嫘拚较騕J];吉林大學(xué)學(xué)報(工學(xué)版);2012年01期
10 劉文娟;梁志勇;;一種基于改進傅里葉變換的回彈補償算法研究[J];計算機應(yīng)用研究;2009年09期
相關(guān)博士學(xué)位論文 前3條
1 廖娟;基于光學(xué)測量的曲面沖壓件回彈離散補償算法研究[D];華南理工大學(xué);2011年
2 吳磊;高強度鋼板扭曲回彈特性及控制方法研究[D];湖南大學(xué);2010年
3 杜亭;面向沖壓全工序與設(shè)計全流程的板料成形模擬系統(tǒng)[D];華中科技大學(xué);2008年
,本文編號:1737429
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1737429.html