隨機共振參數(shù)優(yōu)化及其應用研究
本文選題:隨機共振 切入點:參數(shù)優(yōu)化 出處:《中國計量學院》2014年碩士論文 論文類型:學位論文
【摘要】:隨機共振是以噪聲為媒介引起微弱周期信號與非線性系統(tǒng)協(xié)同作用的非線性現(xiàn)象,涉及的參數(shù)有周期信號的幅值、頻率,噪聲強度和非線性系統(tǒng)參數(shù)。在實際應用中,輸入信號和噪聲是給定的,只有通過調(diào)節(jié)非線性系統(tǒng)參數(shù),使非線性系統(tǒng)與輸入信號匹配,才能產(chǎn)生隨機共振。本文分析了雙穩(wěn)系統(tǒng)參數(shù)對隨機共振的影響,提出基于人工魚群算法的自適應隨機共振。 分析了雙穩(wěn)系統(tǒng)參數(shù)對勢壘高度的影響以及系統(tǒng)輸出信噪比隨雙穩(wěn)系統(tǒng)參數(shù)的變化,通過調(diào)節(jié)雙穩(wěn)系統(tǒng)參數(shù)實現(xiàn)了隨機共振的產(chǎn)生與增強。 研究了常用自適應算法的特點,針對線性隨機搜索算法采用疊加權值的方法,無法保證全局最優(yōu)解和遺傳算法因為引入隨機突變而搜索到錯誤空間的不足,提出了基于人工魚群算法的自適應隨機共振,利用人工魚群算法自適應地調(diào)節(jié)雙穩(wěn)系統(tǒng)參數(shù),實現(xiàn)隨機共振;將兩個雙穩(wěn)系統(tǒng)經(jīng)過非線性耦合的方式構成耦合系統(tǒng),通過耦合的作用控制隨機共振的產(chǎn)生,進而對控制參數(shù)的優(yōu)化增強共振效應。 將基于人工魚群算法的自適應隨機共振應用于軸承滾動體故障、內(nèi)圈故障的檢測和不同流量的渦街信號的檢測,成功地獲取了故障特征頻率和渦街頻率。實驗結果表明,利用人工魚群算法并行優(yōu)化雙穩(wěn)系統(tǒng)參數(shù),能夠增強微弱的特征信號,提高信噪比,有效地實現(xiàn)微弱信號的檢測。 最后,利用COM技術的LabVIEW與MATLAB的無縫集成,開發(fā)了微弱信號智能檢測系統(tǒng),該系統(tǒng)能夠根據(jù)不同的被測信號特性,自適應地調(diào)節(jié)雙穩(wěn)系統(tǒng)參數(shù),,實現(xiàn)隨機共振。經(jīng)對渦街信號的檢測表明系統(tǒng)能有效地實現(xiàn)微弱特征信號的檢測,具有廣闊的應用前景。
[Abstract]:Stochastic resonance (SR) is a nonlinear phenomenon in which the weak periodic signal and the nonlinear system interact with each other by using noise as the medium. The parameters involved include amplitude, frequency, noise intensity and nonlinear system parameters of the periodic signal. The input signal and noise are given. Only by adjusting the parameters of the nonlinear system, can the nonlinear system match with the input signal to produce stochastic resonance. In this paper, the influence of the bistable system parameters on the stochastic resonance is analyzed. Adaptive stochastic resonance based on artificial fish swarm algorithm is proposed. The influence of bistable system parameters on the barrier height and the variation of output SNR with bistable system parameters are analyzed. The stochastic resonance is generated and enhanced by adjusting the bistable system parameters. In this paper, the characteristics of common adaptive algorithms are studied. The method of superposition weights is used in linear random search algorithm, which can not guarantee the global optimal solution and the deficiency of genetic algorithm to search the wrong space because of the introduction of random mutation. Adaptive stochastic resonance based on artificial fish swarm algorithm is proposed. The parameters of bistable system are adjusted adaptively by artificial fish swarm algorithm to realize stochastic resonance. The stochastic resonance is controlled by coupling, and the resonance effect is enhanced by optimizing the control parameters. Adaptive stochastic resonance based on artificial fish swarm algorithm is applied to the detection of bearing rolling body fault, inner ring fault and vortex signal with different flow rate. The fault characteristic frequency and vortex frequency are obtained successfully. The experimental results show that, By using artificial fish swarm algorithm to optimize the parameters of bistable system in parallel, the weak characteristic signal can be enhanced, the signal-to-noise ratio (SNR) can be improved, and the weak signal can be detected effectively. Finally, using the seamless integration of LabVIEW and MATLAB of COM technology, a weak signal intelligent detection system is developed. The system can adjust the parameters of bistable system adaptively according to different characteristics of measured signal. The detection of vortex signal shows that the system can detect the weak characteristic signal effectively and has a broad application prospect.
【學位授予單位】:中國計量學院
【學位級別】:碩士
【學位授予年份】:2014
【分類號】:TB53;TP18
【參考文獻】
相關期刊論文 前10條
1 裴鋒,汪翠英;利用COM技術的LabVIEW與MATLAB的無縫集成[J];儀器儀表用戶;2005年02期
2 吳利平;李贊;李建東;陳晨;;一種基于經(jīng)典遺傳算法的自適應隨機共振系統(tǒng)[J];計算機科學;2011年11期
3 王冬冬;周永權;;人工魚群算法在求解非線性方程組中的應用[J];計算機應用研究;2007年06期
4 李繼猛;陳雪峰;何正嘉;;采用粒子群算法的沖擊信號自適應單穩(wěn)態(tài)隨機共振檢測方法[J];機械工程學報;2011年21期
5 雷亞國;韓冬;林京;何正嘉;譚繼勇;;自適應隨機共振新方法及其在故障診斷中的應用[J];機械工程學報;2012年07期
6 李華鋒,徐博侯;隨機共振系統(tǒng)輸出的一種新的反演方法 [J];力學學報;2003年02期
7 康艷梅,徐健學,謝勇;雙穩(wěn)杜芬振子的隨機共振及其動力學機制[J];力學學報;2004年02期
8 徐云,王超;單結管電路中的隨機共振過程[J];清華大學學報(自然科學版);2000年01期
9 李冰,彭建華,劉延柱;隨機延時Hodgkin-Huxley神經(jīng)網(wǎng)絡的同步與聯(lián)想記憶[J];上海交通大學學報;2005年11期
10 劉立,龍長才;聲學隨機共振實驗[J];物理實驗;2005年01期
本文編號:1620327
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1620327.html