對置式換能器陣聲場性能仿真與實驗
本文關鍵詞: 超聲駐波懸浮傳輸 對置式換能器陣 幾何位置參數(shù) 聲場性能 勢阱位置 出處:《哈爾濱工業(yè)大學》2017年碩士論文 論文類型:學位論文
【摘要】:超聲駐波懸浮傳輸技術作為一種非接觸式傳輸技術,廣泛應用于生物、化學、材料及機械等科學領域,但關于利用對置式換能器陣裝置實現(xiàn)一定應用的研究較少,因此本課題所研究的對置式換能器陣聲場性能仿真與實驗,將對置式換能器陣分為同軸陣元與非同軸陣元,通過仿真與實驗分析這兩種模式下對應聲場性能,從而實現(xiàn)一定的應用。具體研究內容如下:首先,進行對置式換能器陣形成聲場的分布規(guī)律的理論分析,推出波動方程,在兩陣元同軸的情況下,推導聲場中聲壓、質點速度、時間平均勢、聲輻射力等參數(shù)的分布規(guī)律,分析相位差對聲場強度的影響,得出駐波聲場形成的條件;對非同軸陣元形成的聲場進行二維空間理論分析;比較不同換能器陣形成聲場的特點,當兩陣元一端振動一端不振、兩端同向振動、兩端相向振動時,形成駐波聲場的條件不同。其次,針對兩同軸陣元形成聲場進行駐波形成與軸向懸浮傳輸?shù)难芯。通過仿真與實驗分析諧振頻率、工作頻率、陣元振幅、測量位置、測量角度等參數(shù)對單陣元聲場聲壓的影響;通過仿真與實驗分析諧振腔高度與陣元間相位差對駐波聲場的影響,得出不同駐波諧振模式下小球的懸浮位置與各參數(shù)之間的關系;可通過調節(jié)諧振腔高度與相位差實現(xiàn)懸浮小球沿軸線方向上的非接觸傳輸,實現(xiàn)多個物體同時懸浮并傳輸。最后,通過仿真與實驗對非同軸陣元聲場中駐波的形成與勢阱位置進行研究。將陣元聲波傳輸路徑進行規(guī)劃,通過仿真研究輻射面位置、輻/反射面距離、陣元傾角等幾何位置參數(shù)與耦合聲場之間的關系,通過實驗分析幾何位置參數(shù)與勢阱位置的關系,總結出各參數(shù)對聲場性能的影響,如:當兩陣元相位差為π,兩輻射面與反射面距離之和為半波長偶數(shù)倍時,諧振腔中形成駐波聲場,可實現(xiàn)小球懸浮于該聲場中的勢阱位置。
[Abstract]:As a non-contact transmission technology, ultrasonic standing wave suspension transmission technology is widely used in biological, chemical, material and mechanical fields. Therefore, the contrast transducer array is divided into coaxial array element and non-coaxial array element, and the corresponding sound field performance is analyzed by simulation and experiment. The specific research contents are as follows: firstly, the theoretical analysis of the distribution law of the sound field formed by the counter transducer array is carried out, and the wave equation is deduced. In the case of coaxial of the two array elements, the sound pressure and particle velocity in the sound field are deduced. The distribution law of time average potential, sound radiation force and other parameters are analyzed, the influence of phase difference on sound field intensity is analyzed, the condition of standing wave sound field formation is obtained, the sound field formed by non-coaxial array element is analyzed in two-dimensional space theory, and the influence of phase difference on sound field intensity is analyzed. Comparing the characteristics of different transducer arrays to form sound field, when one end vibration of two arrays is not vibrating, both ends are in the same direction, and two ends are in opposite direction, the conditions for the formation of standing wave sound field are different. Secondly, The influence of resonant frequency, working frequency, array amplitude, measuring position and measuring angle on sound pressure of single array element is analyzed by simulation and experiment. The influence of the height of the resonator and the phase difference between the array elements on the standing wave sound field is analyzed by simulation and experiment, and the relationship between the suspended position of the small ball and the parameters under different standing wave resonance modes is obtained. By adjusting the height of the cavity and the phase difference, the non-contact transmission of the suspended sphere along the axis can be realized, and several objects can be suspended and transmitted simultaneously. Finally, The formation of standing wave and the position of potential well in the sound field of non-coaxial array element are studied by simulation and experiment. The transmission path of acoustic wave is planned, and the position of radiation surface and the distance between radiation and reflection surface are studied by simulation. The relationship between geometric position parameters such as dip angle of array elements and coupled sound field is analyzed experimentally, and the influence of each parameter on sound field performance is summarized by analyzing the relationship between geometric position parameters and potential well position. For example, when the phase difference of the two array elements is 蟺 and the sum of the distance between the two radiation surfaces and the reflection surface is half wavelength even, the standing wave sound field is formed in the resonator, which can realize the potential well position of the small sphere suspended in the sound field.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TB552
【相似文獻】
相關期刊論文 前10條
1 宋庭新;超聲波聲場的數(shù)值計算與仿真[J];湖北工學院學報;2004年02期
2 王秋萍;劉瑞聰;;超聲清洗槽內聲場分布的研究[J];蘭州交通大學學報;2006年01期
3 霍彥明;李爭;李永偉;王智彪;;聚焦區(qū)域高聲強聲場分布的測量方法研究[J];應用聲學;2012年04期
4 王明洲,錢建平;有限空間輻射源聲場分布特性研究[J];艦船科學技術;1995年02期
5 彭健新;周光平;梁召峰;;氣泡體積比對流體中超聲聲場分布的影響[J];華南理工大學學報(自然科學版);2008年08期
6 樂建威;王鴻樟;;治癌用超聲加熱裝置中柱面聚焦換能器聲場[J];上海交通大學學報;1985年02期
7 溫正雄;;氣槍次聲掃雷具聲場計算及主要參數(shù)的選擇[J];海軍工程學院學報;1985年01期
8 李忠強,王鴻樟;球殼輻射器和相控球面陣的聲場[J];聲學技術;1986年03期
9 劉明;;光彈效應在聲場測試中的應用[J];試驗技術與試驗機;1988年02期
10 林書玉,張福成,郭孝武;關于改善超聲清洗聲場均勻性的研究[J];應用聲學;1993年02期
相關會議論文 前10條
1 陸建萍;王為標;何世堂;水永安;;表面聲場分布的數(shù)值模擬[A];中國聲學學會2006年全國聲學學術會議論文集[C];2006年
2 呂君;趙正予;周晨;饒艷;;均勻線陣列非線性聲場分布的二維數(shù)值模擬[A];泛在信息社會中的聲學——中國聲學學會2010年全國會員代表大會暨學術會議論文集[C];2010年
3 張軍;王月兵;;高頻聚焦球冠陣焦平面聲場分布[A];中國聲學學會2007年青年學術會議論文集(上)[C];2007年
4 呂君;趙正予;宋楊;;線性陣列的大氣聲場分布的研究[A];2008年全國聲學學術會議論文集[C];2008年
5 王奇;陳皓;姜學平;王寅觀;錢夢,
本文編號:1537285
本文鏈接:http://www.sikaile.net/guanlilunwen/gongchengguanli/1537285.html