天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 管理論文 > 成本管理論文 >

基于Dymola的電動車熱管理系統(tǒng)模塊化建模與集成仿真

發(fā)布時間:2018-06-02 15:04

  本文選題:電動汽車 + 熱管理系統(tǒng); 參考:《吉林大學(xué)》2017年碩士論文


【摘要】:電動汽車作為一種節(jié)能環(huán)保的交通運輸工具,近些年來受到了極大的關(guān)注和發(fā)展,F(xiàn)階段電動汽車上所搭載的動力電池仍以鋰離子化學(xué)電池為主,然而其能量效率和壽命受溫度的影響非常嚴重:鋰離子電池在低溫下的能量效率極低,因此從節(jié)能的角度,應(yīng)當為低溫下的車載鋰電池施加一定的加熱措施;鋰離子電池在高低溫下都會面臨嚴重的老化衰退,進而縮短電池的循環(huán)壽命,因此從降低電池替換成本的角度,也應(yīng)當采取相應(yīng)的溫控措施。針對以上問題,本文以某純電動客車項目為依托,設(shè)計了一套液體循環(huán)加熱系統(tǒng),以實現(xiàn)在冬天對電池的預(yù)熱;以及一套雙蒸發(fā)器空調(diào)制冷系統(tǒng),以實現(xiàn)在夏天對電池和乘員艙的制冷。借助Dymola這一適于系統(tǒng)模塊化建模和多領(lǐng)域集成仿真的軟件平臺,本文對以上兩套熱管理系統(tǒng)的部件進行了模塊化劃分,并分別搭建了各子模塊的模型。之后將各子模塊集成為Dymola下的熱管理系統(tǒng),在不同車輛行駛條件和熱管理方案下,仿真分析了熱管理系統(tǒng)的表現(xiàn)和電池性能會受到的影響。對預(yù)加熱系統(tǒng)的仿真結(jié)果進行了對比,定性地得出了低溫下電池預(yù)熱需求的大小與環(huán)境溫度和車輛續(xù)駛里程的關(guān)系;對于制冷系統(tǒng),仿真對比了不同電池冷卻方式的制冷效果。最后根據(jù)低溫下對電池進行預(yù)熱的實際項目需求,針對預(yù)加熱系統(tǒng),以整車運行成本最低為目標,定量地求解了不同環(huán)境溫度和續(xù)駛里程下電池的最優(yōu)預(yù)熱目標溫度,并進行了實車試驗。本文的研究內(nèi)容具體如下:(1)查閱國內(nèi)外相關(guān)研究領(lǐng)域的論文著作,重點調(diào)研了鋰離子電池的熱電、衰退特性,熱管理系統(tǒng)的研究現(xiàn)狀和Dymola的應(yīng)用現(xiàn)狀,確定了本文的研究內(nèi)容和側(cè)重點。(2)在前人的研究基礎(chǔ)上,分析各種熱管理方式的利弊,選擇液體為電池的熱管理介質(zhì)。針對低溫下電池包的預(yù)熱需求,提出一套液體循環(huán)加熱系統(tǒng)方案;針對高溫下動力電池和乘員艙的制冷需求,提出一套雙蒸發(fā)器空調(diào)制冷系統(tǒng)方案。分析兩個系統(tǒng)的拓撲結(jié)構(gòu)和工作原理,并對關(guān)鍵部件進行匹配,確定建模時部件的相關(guān)參數(shù)。(3)在探究了Dymola建模機理的基礎(chǔ)上,將整車熱管理系統(tǒng)劃分為五大子模塊:動力電池、充電樁、液體循環(huán)加熱、雙蒸發(fā)器空調(diào)和乘員艙。對每個模塊的工作原理進行研究,并依照Dymola的建模特點搭建模型。其中電池模塊的搭建是依據(jù)本文提出的半經(jīng)驗電池熱電-衰退動態(tài)耦合模型。(4)將動力電池、充電樁、液體循環(huán)加熱模塊集成為預(yù)加熱系統(tǒng),在給定的工況和環(huán)境下對此系統(tǒng)進行了對比仿真,從提升電池能量效率和減小容量衰退的角度,定性分析了不同條件下電池預(yù)熱需求的大小,并得出了環(huán)境溫度越低時預(yù)熱需求應(yīng)該越大,而續(xù)駛里程越長時預(yù)熱需求不一定會越大的結(jié)論。將動力電池、空調(diào)系統(tǒng)、乘員艙模塊集成為制冷系統(tǒng),仿真研究了制冷系統(tǒng)的引入會對電池性能造成的影響,并對比了強制風(fēng)冷、空調(diào)風(fēng)冷、空調(diào)液冷這三種冷卻方式對電池的制冷效果,結(jié)果表明空調(diào)液冷的制冷效果最好。(5)將整車運行成本量化為兩部分:整車電能消耗成本和電池老化成本。然后根據(jù)項目需求,以整車運行成本最低為目標,在Dymola中求解了不同環(huán)境溫度和續(xù)駛里程下電池的最優(yōu)預(yù)熱目標溫度,即求解了不同條件下預(yù)加熱系統(tǒng)應(yīng)當將電池加熱到何種溫度。仿真結(jié)果表明,隨著環(huán)境溫度的降低或者續(xù)駛里程的縮短,電池的最優(yōu)預(yù)熱目標溫度應(yīng)該越大。另外,通過對仿真結(jié)果的分析,發(fā)現(xiàn)在低溫條件下對電池進行預(yù)熱會增加整車電能消耗成本,但是可以大幅降低電池老化成本。在兩者的綜合作用下,預(yù)熱過程仍可以大幅降低整車運行成本。最后,在實車上布置了預(yù)加熱系統(tǒng),進行實車試驗,驗證了電池模型的精度和低溫下對電池進行預(yù)熱的必要性。
[Abstract]:Electric vehicles, as a kind of energy saving and environmental protection vehicle, have received great attention and development in recent years. The power cells on electric vehicles are still mainly lithium ion chemical batteries at the present stage. However, the energy efficiency and life of the electric vehicles are greatly influenced by the temperature. The energy efficiency of lithium ion batteries at low temperature is very low, because of the low energy efficiency of the lithium ion batteries. From the energy saving point of view, a certain heating measure should be applied to the lithium battery at low temperature. The lithium ion battery will face serious aging decline at high temperature and low temperature, and thus shorten the cycle life of the battery. Therefore, the temperature control measures should be taken from the angle of reducing the replacement cost of the battery. Based on the electric bus project, a set of liquid circulating heating system is designed to realize the preheating of the battery in the winter, and a double evaporator air conditioning refrigeration system to achieve the cooling of the battery and the crew module in the summer. With the help of Dymola, a software platform suitable for modular modeling and multi domain integrated simulation, the above paper The components of the two sets of heat management systems are divided into modules, and the models of each sub module are set up respectively. Then each sub module is integrated into a heat management system under Dymola. Under different vehicle driving conditions and heat management schemes, the performance of the heat management system and the performance of the electric pool will be influenced. The real results are compared, and the relationship between the size of the battery preheating demand at low temperature and the environment temperature and the driving mileage of the vehicle is qualitatively obtained. For the refrigeration system, the simulation results are compared with the different cooling methods of the battery. Finally, the pre heating system is carried out in accordance with the pre heating system and the whole vehicle is carried out according to the pre heating system. At the lowest cost, the optimal preheating target temperature of battery under different ambient temperature and driving mileage was quantitatively calculated and the actual vehicle test was carried out. The contents of this paper are as follows: (1) consult the paper works at home and abroad, and focus on the thermal power, decline characteristics and the research of the thermal management system. The present situation and the application status of Dymola have been determined. (2) on the basis of previous research, the advantages and disadvantages of various heat management methods are analyzed. Liquid is selected as the heat management medium for battery. A set of liquid circulating heating system is proposed for the preheating demand of battery pack at low temperature. A set of dual evaporator air conditioning refrigeration system scheme is proposed. The topology and working principle of the two systems are analyzed and the key components are matched to determine the relevant parameters of the components in the modeling. (3) on the basis of exploring the mechanism of Dymola modeling, the whole car heat management system is divided into five modules: power battery, Charging pile, liquid circulation heating, double evaporator air conditioning and crew module. The working principle of each module is studied, and the model is built according to the modeling characteristics of Dymola. The building of battery module is based on the semi empirical battery thermoelectric decay dynamic coupling model proposed in this paper. (4) power battery, charging pile, liquid circulating heating module. It is integrated into a preheating system to simulate the system under given conditions and environment. From the angle of improving the battery energy efficiency and reducing the capacity decline, the size of the preheating demand under different conditions is qualitatively analyzed. The higher the demand for preheating is needed when the environment temperature is lower, and the preheating demand is the longer the driving mileage is. The power cell, air conditioning system and the crew module are integrated into the refrigeration system. The effects of the introduction of the refrigeration system on the battery performance are studied, and the effect of the three cooling modes on the electric pool is compared with the forced air cooling, air conditioning and air conditioning. The results show that the cooling effect of the air conditioning liquid cooling is shown. (5) the total vehicle operation cost is quantified as two parts: the electric energy consumption cost and the battery aging cost. Then according to the project demand, the optimal preheating target temperature of the battery under the different ambient temperature and the driving mileage is solved in the Dymola, that is, the pre heating system under different conditions should be solved. The simulation results show that the optimal preheating target temperature of the battery should be greater with the decrease of the ambient temperature or the shorter driving mileage. In addition, through the analysis of the simulation results, it is found that the preheating of the battery at low temperature will increase the cost of the electric energy consumption, but the battery can be greatly reduced. Under the combination of the two, the preheating process can still greatly reduce the cost of the whole vehicle. Finally, the pre heating system is arranged on the real car, and the real car test is carried out. The precision of the battery model and the necessity of preheating the battery at low temperature are verified.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:U469.72

【相似文獻】

相關(guān)期刊論文 前10條

1 ;宇通熱管理系統(tǒng)節(jié)油5%[J];駕駛園;2007年12期

2 于瑩瀟;袁兆成;田佳林;馬家義;;現(xiàn)代汽車熱管理系統(tǒng)研究進展[J];汽車技術(shù);2009年08期

3 ;不節(jié)油,賠萬元!——宇通推出發(fā)動機熱管理系統(tǒng)萬元懸賞活動[J];駕駛園;2008年02期

4 于東輝;向昊;;汽車熱管理系統(tǒng)基礎(chǔ)問題分析[J];科技視界;2013年02期

5 鄧義斌;黃榮華;王兆文;程偉;;車輛熱管理系統(tǒng)及其研究[J];汽車工程師;2011年01期

6 周磊;許翔;遲淼;孫文龍;劉瑞林;;車輛熱管理系統(tǒng)研究進展[J];內(nèi)燃機與配件;2014年02期

7 譚建勛,沈瑜銘,齊放,俞小莉,張毅,趙駱偉,黃旭就,羅維;工程機械熱管理系統(tǒng)試驗平臺的開發(fā)[J];工程機械;2005年01期

8 席蕾;;宇通消息二則[J];商用汽車新聞;2008年01期

9 劉景平;李毅;;電控液壓驅(qū)動熱管理系統(tǒng)的應(yīng)用研究[J];建筑機械;2010年11期

10 徐小平,李勁東,范含林;大型航天器熱管理系統(tǒng)集成分析[J];中國空間科學(xué)技術(shù);2004年04期

相關(guān)會議論文 前3條

1 梁昌杰;陳方元;秦大同;;混合動力汽車熱管理系統(tǒng)流場和溫度場CFD分析[A];2010年重慶市機械工程學(xué)會學(xué)術(shù)年會論文集[C];2010年

2 梁昌杰;陳方元;秦大同;;混合動力汽車熱管理系統(tǒng)流場和溫度場CFD分析[A];2010全國機械裝備先進制造技術(shù)(廣州)高峰論壇論文匯編[C];2010年

3 袁美名;常士楠;艾素霄;;飛機機載綜合熱管理系統(tǒng)穩(wěn)態(tài)仿真研究[A];大型飛機關(guān)鍵技術(shù)高層論壇暨中國航空學(xué)會2007年學(xué)術(shù)年會論文集[C];2007年

相關(guān)重要報紙文章 前1條

1 宇通客車市場部 丁志輝;宇通的發(fā)動機熱管理系統(tǒng)是如何為客戶創(chuàng)造效益的[N];中國工業(yè)報;2007年

相關(guān)碩士學(xué)位論文 前10條

1 苗龍;特種車輛分布式混合動力熱管理系統(tǒng)研究[D];北京理工大學(xué);2015年

2 李峰;插電式混合動力汽車熱管理系統(tǒng)開發(fā)及其控制算法研究[D];吉林大學(xué);2016年

3 陳劉忠;無人機綜合熱管理系統(tǒng)建模與仿真[D];南京航空航天大學(xué);2016年

4 李波;紅巖C100 450載貨車熱管理系統(tǒng)仿真與試驗研究[D];重慶大學(xué);2016年

5 張柳;基于動力渦輪發(fā)電的熱管理系統(tǒng)用電協(xié)調(diào)及匹配研究[D];天津大學(xué);2016年

6 朱濤;基于Dymola的電動車熱管理系統(tǒng)模塊化建模與集成仿真[D];吉林大學(xué);2017年

7 羅建曦;汽車熱管理系統(tǒng)集成空氣側(cè)熱流體分析研究[D];清華大學(xué);2004年

8 楊勝;汽車熱管理系統(tǒng)半物理仿真試驗平臺研究[D];清華大學(xué);2004年

9 袁聿震;基于一、三維耦合的車輛熱管理系統(tǒng)仿真計算[D];山東大學(xué);2012年

10 王海洋;摩托車熱管理系統(tǒng)的分析與優(yōu)化[D];重慶大學(xué);2014年

,

本文編號:1969199

資料下載
論文發(fā)表

本文鏈接:http://www.sikaile.net/guanlilunwen/chengbenguanlilunwen/1969199.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e8256***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com