蒙特卡羅模擬法和擬蒙特卡羅模擬法在期權(quán)定價(jià)問題中的對(duì)比研究
本文關(guān)鍵詞:蒙特卡羅模擬法和擬蒙特卡羅模擬法在期權(quán)定價(jià)問題中的對(duì)比研究 出處:《復(fù)旦大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 蒙特旨羅方法 擬蒙特卡羅方法 低差異序列 期權(quán)定價(jià)
【摘要】:期權(quán)以及其他金融衍生產(chǎn)品在金融市場(chǎng)中變得越來越重要。隨著我國(guó)金融市場(chǎng)創(chuàng)新力度的加大,在商品期貨、股指期貨之后,期權(quán)也將要推出交易。期權(quán)定價(jià)問題就顯得尤為重要,期權(quán)的合理定價(jià)不僅能夠使交易市場(chǎng)穩(wěn)步有序,更能給投資者的投資決策提供重要的信息。 期權(quán)定價(jià)主要有三種方法:偏微分方程法、鞅方法以及數(shù)值方法,蒙特卡羅方法就是數(shù)值方法中的一種。蒙特卡羅方法是一種向后計(jì)算方法,在解決路徑依賴的期權(quán)定價(jià)問題上十分有效。而收斂速度慢、模擬精度不高以及計(jì)算效率較低成為了蒙特卡羅方法的不足。擬蒙特卡羅方法也叫低差異方法是對(duì)蒙特卡羅方法的一種改進(jìn),擬蒙特卡羅方法的收斂率為O(1/n),比傳統(tǒng)蒙特卡羅方法O(1/√n)的收斂速度快得多,提高了模擬效率與精度。 本文研究蒙特卡羅方法以及擬蒙特卡羅方法生成的隨機(jī)數(shù)序列的性質(zhì),以Halton序列為例,通過仿真模擬,對(duì)比了蒙特卡羅方法以及擬蒙特卡羅方法在期權(quán)定價(jià)上的精確性以及模擬效率,并以BS期權(quán)定價(jià)公式算出的期權(quán)理論價(jià)格作為參考,證實(shí)了擬蒙特卡羅方法在隨機(jī)數(shù)序列生成以及期權(quán)定價(jià)上的優(yōu)勢(shì)。并且應(yīng)用模擬方法對(duì)路徑依賴的特種期權(quán)進(jìn)行定價(jià),從模擬結(jié)果中分析了特種期權(quán)的一些性質(zhì)。 本文的創(chuàng)新點(diǎn)包括:1)用蒙特卡羅方法以及擬蒙特卡羅方法對(duì)期權(quán)定價(jià),并且在Matlab軟件上編寫所有程序做實(shí)證分析;2)研究擬蒙特卡羅Halton序列的性質(zhì)以及其生成的擬隨機(jī)數(shù)的特點(diǎn);3)對(duì)蒙特卡羅以及擬蒙特卡羅方法在期權(quán)定價(jià)問題上進(jìn)行仿真模擬,以及對(duì)比研究,證明擬蒙特卡羅方法的優(yōu)勢(shì)。
[Abstract]:Options and other financial derivatives are becoming more and more important in the financial market. With the increase of innovation in our financial market, after commodity futures, stock index futures. The issue of option pricing is especially important. The reasonable pricing of options can not only make the trading market orderly but also provide important information for investors to make investment decisions. There are three methods for option pricing: partial differential equation method martingale method and numerical method. Monte Carlo method is one of the numerical methods. Monte Carlo method is a backward calculation method. It is very effective in solving the path-dependent option pricing problem, but the convergence rate is slow. The deficiency of Monte Carlo method is low simulation precision and low calculation efficiency. Quasi-Monte Carlo method, also called low difference method, is an improvement on Monte Carlo method. The convergence rate of the quasi-Monte Carlo method is 1 / n ~ (-1), which is much faster than that of the traditional Monte-Carlo method, and the efficiency and accuracy of the simulation are improved. In this paper, we study the properties of random number sequences generated by Monte Carlo method and quasi Monte Carlo method. Taking Halton sequences as an example, we simulate them by simulation. The accuracy and simulation efficiency of Monte-Carlo method and quasi-Monte Carlo method in option pricing are compared, and the theoretical price of option calculated by BS option pricing formula is taken as reference. The advantages of quasi-Monte Carlo method in generating random number sequences and pricing options are confirmed, and the path-dependent special options are priced by simulation method. Some properties of special options are analyzed from the simulation results. The innovations of this paper include: (1) pricing options with Monte Carlo method and quasi Monte Carlo method, and writing all programs on Matlab software for empirical analysis; 2) the properties of quasi Monte Carlo Halton sequences and the characteristics of their generated quasi random numbers are studied. 3) the paper simulates and compares the Monte Carlo and quasi Monte Carlo methods in option pricing problem, and proves the advantage of quasi Monte Carlo method.
【學(xué)位授予單位】:復(fù)旦大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:F224;F830.9
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 賴斯鑓;盧秀玉;;蒙特卡羅方法與擬蒙特卡羅方法解線性方程組[J];東華大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年02期
2 馬俊海,張維;金融衍生工具定價(jià)中蒙特卡羅方法的近期應(yīng)用分析[J];管理工程學(xué)報(bào);2000年02期
3 唐明琴;;美式期權(quán)的Monte Carlo模擬法定價(jià)理論及應(yīng)用[J];廣東金融學(xué)院學(xué)報(bào);2007年05期
4 汪東,張為黎;使用擬蒙特卡羅模擬的歐式看漲期權(quán)的定價(jià)[J];生產(chǎn)力研究;2004年07期
5 羅付巖;徐海云;;擬蒙特卡羅模擬方法在金融計(jì)算中的應(yīng)用研究[J];數(shù)理統(tǒng)計(jì)與管理;2008年04期
6 馬俊海,張維,劉鳳琴,熊熊;金融衍生證券定價(jià)中蒙特卡羅模擬技術(shù)的改進(jìn)[J];天津大學(xué)學(xué)報(bào);2000年04期
相關(guān)博士學(xué)位論文 前1條
1 傅德偉;隨機(jī)二叉樹期權(quán)定價(jià)模型及模擬分析[D];廈門大學(xué);2008年
,本文編號(hào):1412157
本文鏈接:http://www.sikaile.net/guanlilunwen/bankxd/1412157.html