35kW數(shù)據(jù)中心熱管復(fù)合型空調(diào)模塊設(shè)計(jì)研究
本文選題:數(shù)據(jù)中心 切入點(diǎn):系統(tǒng)設(shè)計(jì) 出處:《合肥工業(yè)大學(xué)》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:針對(duì)高性能計(jì)算機(jī)大功率、高熱密度的電子冷卻需求,基于節(jié)能、高可靠性和良好的調(diào)節(jié)特性為目標(biāo),提出了一種蒸氣壓縮/分離式熱管復(fù)合制冷機(jī)組的方案。熱管復(fù)合制冷系統(tǒng)具有壓縮式制冷、壓縮式/熱管復(fù)合制冷和熱管制冷三種工作模式,采用屏蔽泵驅(qū)動(dòng)熱管系統(tǒng)主動(dòng)循環(huán),可根據(jù)室內(nèi)外溫差和熱負(fù)荷狀況自動(dòng)切換。在外界環(huán)境溫度低于被控對(duì)象設(shè)定溫度的氣候條件下,運(yùn)行熱管循環(huán)不僅可以大幅降低冷源設(shè)備的能耗,而且可以避免運(yùn)行壓縮式制冷的高能耗、低溫啟動(dòng)和回油潤(rùn)滑等問(wèn)題。本文主要工作內(nèi)容有:(1)收集、分析國(guó)內(nèi)外相關(guān)技術(shù)資料,了解熱管技術(shù)的研究與應(yīng)用現(xiàn)狀;調(diào)研用戶技術(shù)需求、空調(diào)對(duì)象負(fù)荷特性,為空調(diào)機(jī)組的系統(tǒng)設(shè)計(jì)提供依據(jù);(2)根據(jù)某高性能計(jì)算機(jī)高熱密度電子冷卻需求,提出熱管復(fù)合型空調(diào)模塊化設(shè)計(jì)方案;(3)建立熱管系統(tǒng)的數(shù)學(xué)模型,模擬研究變工況運(yùn)行性能,為熱管復(fù)合型空調(diào)模塊優(yōu)化設(shè)計(jì)和能量調(diào)節(jié)與控制建立基礎(chǔ);(4)進(jìn)行35kW熱管復(fù)合型空調(diào)模塊設(shè)計(jì),其中包括熱力循環(huán)系統(tǒng)設(shè)計(jì)、換熱器設(shè)計(jì)、液泵設(shè)計(jì)選型、儲(chǔ)液器設(shè)計(jì)等。本文取得的階段性研究成果:(1)提出了具有自主知識(shí)產(chǎn)權(quán)的復(fù)合型空調(diào)循環(huán)系統(tǒng)設(shè)計(jì)方案,采用動(dòng)力型分離式熱管,復(fù)合區(qū)的引入拓寬了熱管循環(huán)工作溫區(qū),可更有效利用低溫季節(jié)的自然冷源,大幅度節(jié)能減排;(2)采用模塊化設(shè)計(jì)方案,可根據(jù)空調(diào)對(duì)象的負(fù)荷狀況靈活配置,便于規(guī);a(chǎn)和降低制造成本;(3)熱管復(fù)合型空調(diào)模塊的制冷單元與熱管單元具有獨(dú)立的制冷劑流通回路,并在蒸發(fā)冷凝器處實(shí)現(xiàn)復(fù)合;(4)模擬分析了熱管的循環(huán)過(guò)程和工作性能,給出了熱管單元的能量調(diào)節(jié)方式,并模擬計(jì)算了35kW熱管復(fù)合型空調(diào)模塊的全年運(yùn)行總能耗。模擬結(jié)果表明:熱管復(fù)合區(qū)的引入有效拓寬了熱管的運(yùn)行溫區(qū),提高了空調(diào)系統(tǒng)的全年綜合COP,與傳統(tǒng)蒸汽壓縮式冷源系統(tǒng)相比,節(jié)能率大于40%,特別適用于高性能計(jì)算機(jī)等高熱密度電子集成系統(tǒng)全天候溫控需要。
[Abstract]:Aiming at the high power and high heat density electronic cooling demand of high performance computer, the aim is based on energy saving, high reliability and good adjustment characteristics. A scheme of steam compression / split heat pipe composite refrigeration unit is presented. The heat pipe composite refrigeration system has three working modes: compression refrigeration, compression / heat pipe composite refrigeration and heat pipe refrigeration. The active circulation of heat pipe system driven by shield pump can be automatically switched according to the indoor and outdoor temperature difference and heat load condition. The operation of heat pipe cycle can not only greatly reduce the energy consumption of cold source equipment, but also avoid the problems of high energy consumption, low temperature start-up and oil return lubrication in the operation of compression refrigeration. Analyze the relevant technical data at home and abroad, understand the current research and application of heat pipe technology, investigate the technical requirements of users, the load characteristics of air conditioning objects, According to the requirement of high heat density electronic cooling of a high performance computer, a modular design scheme of heat pipe composite air conditioning system is proposed. The mathematical model of heat pipe system is established and the performance of the heat pipe system is simulated and studied. For the optimization design of heat pipe composite air conditioning module and the foundation of energy regulation and control, the design of 35 kW heat pipe composite air conditioning module is carried out, including heat circulation system design, heat exchanger design, liquid pump design and type selection. The design of liquid accumulator and so on. The stage research achievement of this paper is: 1) the design scheme of composite air conditioning cycle system with independent intellectual property rights is put forward. The use of dynamic separated heat pipe, the introduction of compound zone widens the working temperature zone of heat pipe circulation. It can make more effective use of natural cold source in low temperature season, save energy and reduce emissions by a large margin. It adopts modular design scheme and can be configured flexibly according to the load condition of air conditioning object. The refrigeration unit and the heat pipe unit of the heat pipe composite air conditioning module have independent refrigerant circulation circuit, which is convenient for large-scale production and reduces the manufacturing cost. The cycle process and working performance of the heat pipe are simulated and analyzed, and the energy regulation mode of the heat pipe unit is given. The annual total energy consumption of 35kW heat pipe composite air conditioning module is simulated and calculated. The simulation results show that the introduction of the heat pipe composite zone can effectively widen the operating temperature zone of the heat pipe. Compared with the traditional steam compression cold source system, the energy saving rate is more than 40. It is especially suitable for all-weather temperature control of electronic integrated systems with high thermal density, such as high performance computers.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TB657
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李長(zhǎng)云;;利用自然冷源進(jìn)行隔絕換熱的節(jié)能措施[J];電信技術(shù);2008年08期
2 婁小軍;;機(jī)房新風(fēng)系統(tǒng)節(jié)能技術(shù)[J];建筑節(jié)能;2009年12期
3 陳東,徐堯潤(rùn),劉振義,王越;非相鄰冷熱源間強(qiáng)化傳熱新技術(shù)——熱環(huán)的研究[J];工程熱物理學(xué)報(bào);2000年06期
4 歐陽(yáng)德剛;;我國(guó)熱管技術(shù)的研究與應(yīng)用[J];鋼鐵研究;1990年04期
5 李智文;電信機(jī)樓使用雙冷源系統(tǒng)的實(shí)踐和分析[J];廣東通信技術(shù);2000年05期
6 田浩;李震;劉曉華;江億;;信息機(jī)房熱管空調(diào)系統(tǒng)應(yīng)用研究[J];建筑科學(xué);2010年10期
7 李菊香,徐通明;分離式熱管的傳熱極限[J];南京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);1998年01期
8 劉威;許新毅;鄧重秋;;通信機(jī)房空調(diào)系統(tǒng)節(jié)能措施分析[J];暖通空調(diào);2010年04期
9 李奇賀;黃虎;張忠斌;;熱管式機(jī)房空調(diào)性能實(shí)驗(yàn)研究[J];暖通空調(diào);2010年04期
10 金鑫;瞿曉華;祁照崗;陳江平;;分離式熱管型機(jī)房空調(diào)性能實(shí)驗(yàn)研究[J];暖通空調(diào);2011年09期
,本文編號(hào):1611066
本文鏈接:http://www.sikaile.net/falvlunwen/zhishichanquanfa/1611066.html